The Champions #10 ‘controversy’: Did Mark Waid defend internment camps?

Back in July, Aaron Kashtan concluded his short review of Champions #10 which had come out that same month with the following words:

I’ll have to think twice before buying any more Mark Waid comics, and I say that as someone who’s been a fan of his for almost 25 years.

As a regular reader of both Aaron Kashtan’s weblog and Mark Waid’s comics, I had to check out this comic book for myself. Aaron’s problem with Champions #10 is that writer Mark Waid “defends” the fictitious internment camp in which most of the story is set (or maybe even internment camps in general?) and portrays it in an insensitive manner. Several other people have shared this sentiment on the Internet, e.g. Joe Glass at Bleeding Cool, but not that many to qualify it as a full-blown outrage. Anyway, here’s how I see Champions #10, and please note that this is only about the comic and not about the opinions of Aaron Kashtan or Joe Glass or Mark Waid (who identifies himself as a “liberal” and “progressive” writer for what it’s worth).

In the current status quo of the Marvel universe at the time of Champions #10, the villainous organisation Hydra has taken over the United States, and Inhumans (basically a superpowered alien race living among humans) “are being imprisoned in camps across the country”, as the introductory text puts it. The first three comic pages show life in one of these camps in a nutshell: behind the idyllic appearance, a surveillance regime is in operation in which merely talking about escape can get inmates killed immediately.

The action then switches over to the Champions, a superhero team consisting of (Miles Morales) Spider-Man, (Amadeus Cho) Hulk and Viv (daughter of Vision). They locate their missing fourth member, Ms. Marvel, in one of those camps, and set out to free her. After managing to break into the camp and incapacitating the guards, they face the unexpected problem that “some want to go, but some want to stay”, as Hulk says on p. 14 (or 15 – not sure whether the first page after the cover already counts as part of the story). Ms. Dawood, one of the detainees, expands: “What’s happening here is brutally unjust, but we and our children are well cared for here. Out there, we would be hunted relentlessly. It would be a life of fear and desperation. Some of us are willing to make that trade and fight, even though we may not win. But those who stay may be made to pay for their escape, and that terrifies them.”

So far, so good, but then Hulk comments (still on p. 14): “Trust me, as an Asian American, I have a deep historical hatred for internment, but we might have to retreat and try some other–“. This is the crucial point (the rest of the story is of no importance here): Hulk’s comment links the fictitious camp to real-world history. Even though (or rather because) he doesn’t really say much, it triggers questions in the reader’s mind such as whether Hulk thinks that the US government that imprisoned Japanese Americans (and also Korean Americans – Amadeus Cho is of Korean descent) in WWII is morally as bad as Hydra, or whether he feels that the conditions of living are as bad in the camp he is standing in as they were in WWII internment camps. Such ideas might be offensive to Asian Americans – but they are not explicitly expressed in the comic. (Who knows, maybe Hulk is merely thinking, it’s wrong to imprison someone because of his or her race, then and now.) Even if they were, it would be Hulk who has these controversial opinions, not Mark Waid. In the end, Amadeus Cho is only a teenager who hasn’t experienced WWII internment camps, so why should his opinion have such a weight that it could be mistaken for the ‘message’ of the whole comic or its writer? Waid could have devised a better stand-in for himself to broadcast his opinion, if that had been his aim.

Besides Hulk’s comment, is the plot point itself offensive that some of the inmates choose to stay imprisoned in this particular camp rather than break out? How can Ms. Dawood say she is safer inside than outside the camp when she all but witnesses the execution of two other prisoners? One could argue that, once outside the camp, Inhumans would have a good chance of escaping and hiding from Hydra by using their superpowers. However, the inmates are probably safer inside the camp, for as long everyone plays by the rules and doesn’t try to escape, no one is executed. This is an important difference from real-world Nazi concentration camps, many of which were death camps with the purpose of ultimately killing all inmates. Ms. Dawood is also right about “being well cared for”: from what we see of the Inhuman camp, it looks like they live in spacious, well-kept houses with their own lawns. This is an important difference from real-world Asian American internment camps in WWII, in which conditions were miserable.

However, the problem of Champions #10 lies not in the story but in how it is told. The comic has a serious problem with its pacing and crams too much action into too few pages. The situation of the Inhuman inmates and the opinions of their two conflicted groups are relayed mainly through the Champions instead of the Inhumans themselves, because they have already turned into a raging mob and are busy fighting each other. It’s also telling that – after the camp wall has been breached and the guards have been taken out – it’s up to the Champions to come up with a solution to the problem of approaching Hydra reinforcements. The Inhumans, even though they have superpowers too, are relegated to passive victims in need of rescue. And even though there are “hundreds” of inmates in the camp, the Champions only ever talk to two of them (not counting the terrified Inhumans they first meet on p. 10), so the majority of the Inhumans – despite their portrayal as heterogeneous – lack not only agency but also their own voices.

To sum up: is it allowed to allude to real-world internment camps in a superhero comic book? Of course it is. But if the comic is poorly written and the subject matter is not treated with the necessary sensitivity, don’t be surprised if people are offended. That being said, this whole ‘controversy’ seems to be a non-issue along the lines of Action Comics (2011) #1 / “GD” and Batgirl (2011) #37 / “But you’re a–“ (both of which I haven’t read though).

Advertisements

Sequential art at documenta 14

The 2017 edition of the documenta art show ended on September 17 with a slight increase in visitors, but also a financial deficit. While the danger of a discontinuation of the exhibition series seems to have been averted, many visitors (including this one) felt disappointed or at least underwhelmed with regard to the majority of art that was on display.

Like five years ago, the documenta didn’t include any proper comics as far as I could see, but lots of sequential artworks that fit Scott McCloud’s definition of comics. Here are some of them (only from the Kassel portion of the show, not from Athens which co-hosted this documenta):

The Fridericianum venue was almost entirely taken over by works from the National Museum of Contemporary Art (EMST) in Athens. This array of 192 inkjet prints is XYZ 1550 – Placebo 97 from 2015 by Lucas Samaras. Their arrangement implies a vague sequence, and each of them is composed of multiple panels.

Most works from the EMST were rather old, though, such as this painted Newspaper Book from around 1962 by Chryssa.

A clever piece of conceptual photography in which two photographers pass by each other on a staircase, also out of the EMST collection but by Belgian artist Danny Matthys: Brabantdam 59, Gent, Downstairs-Upstairs from 1975.

Another Greek work in the Fridericianum: Diary (Robinson Crusoe) from 2008, a book with sewn lines by Nina Papaconstantinou.

Prints of photographs from documenta 2 (1959) by none other than Hans Haacke.

Images in Matter from 1995 by Rena Papaspyrou. On closer inspection, these ‘books’ made of stone, metal and wood bear faint ink drawings.

Over at the documenta Halle, the long embroidered canvas Historja (2003-08) by Britta Marakatt-Labba supposedly tells the history of the Sami people.

At the Neue Galerie, a kind of storyboard (Atelierul: Scenariul, 1978) by Geta Brătescu is exhibited next to the corresponding video.

Grimmwelt Kassel is the successor of the old Brothers Grimm museum and was used as a documenta venue for the first time. The primary exhibit here was The Blind Merchant (1989-91) by Roee Rosen, a kind of revision or reinterpretation of Shakespeare’s Merchant of Venice with illustrations, some of which consist of multiple panels.


Anime-to-manga adaptations worth reading

This is the fourth blog post of a series on the occasion of ‘100 Years of Anime’. Read the other posts here: Part 1, Part 2, Part 3.

Today we come full circle and return to comics. While most anime are adapted from manga, many original anime have been adapted into manga. Although I haven’t read that many manga based on anime, I’d like to recommend some that I found particularly interesting. As always in my comic reviews, “volumes reviewed” indicates volumes I’ve recently re-read specifically for this blog post and which the review text refers to, i.e. not counting those I’ve read only once.

Neon Genesis Evangelion (新世紀エヴァンゲリオン / Shinseiki Evangelion)
Language: German (translated from Japanese)
Authors: Yoshiyuki Sadamoto / Studio Gainax
Publisher: Carlsen (originally Kadokawa Shoten)
Years: 1999-2015 (originally 1994-2013)
Number of volumes: 14
Volumes reviewed: 1

Pages per volume: ~165
Price per volume: € 6,00
Website: https://www.carlsen.de/serie/neon-genesis-evangelion/18147 (German)
ISBN: 978-3-551-74131-X

I’ve never quite got my head around why Evangelion has become such a cult anime series. Its popularity might be due to having done a lot of things right at the right time. (For more on this aspect, see Sean O’Mara’s blog post on the early years of Studio Gainax.) Looking at the manga (drawn by Gainax character designer Yoshiyuki Sadamoto), there are two actual assets that Evangelion has going for it:

  1. Shinji the emo kid: in the distant future of the year 2015, this troubled teenage protagonist has some issues that quite a few readers of today can probably relate to. On the very first page, Shinji thinks, “I don’t have any dreams, hopes or anything like that. […] That’s why I thought, I didn’t care if I had an accident or died.”
    But then he gets to pilot a mecha…
  2. Mecha design: at its core, Evangelion is still a story about giant robots, and as such, it has to feature mechas that look cool. And they do. The biomorphic or humanoid shape of the EVAs sets them apart from more angular designs in e.g. Mobile Suit Gundam or Transformers.

That being said, there are also many silly ideas in this manga, both in story and design, and a plot that verges on a tedious ‘monster of the week’ pattern. Things get more interesting from around vol. 5 on, when a conspiracy within NERV (the organisation operating the EVAs) is gradually revealed.

Ame & Yuki / Wolf Children (おおかみこどもの雨と雪 / Ōkami kodomo no Ame to Yuki)
Language: German (translated from Japanese)
Authors: Mamoru Hosoda / Yū / Yoshiyuki Sadamoto
Publisher: Tokyopop (originally Kōdansha)
Years: 2013-2014 (originally 2000)
Number of volumes: 3
Volumes reviewed: 1

Pages per volume: 155 (vol. 1-2) / 210 (vol. 3)
Price per volume: € 6,95 (box set: € 16,95)
Website: http://tokyopop.de/programm-winter-2013-2014/ame-und-yuki-die-wolfskinder/ (German)
ISBN: 978-3-8420-0905-9

For some years, thanks to a string of successful all-ages theatrical anime films (The Girl Who Leapt Through Time, Summer Wars), it looked as if director Mamoru Hosoda was going to be ‘the next Miyazaki’, although recently his popularity seems to have been eclipsed by Makoto Shinkai’s. The 117 minutes of Hosoda’s 2012 film Wolf Children (original script by Hosoda himself, character design by the aforementioned Yoshiyuki Sadamoto) have been adapted into a >500 page manga drawn by a newcomer artist who calls herself Yū (優).

In the beginning, the narration seems very fast-paced, as we witness in quick succession how university student Hana falls in love with a fellow student who turns out to be a werewolf, the birth of their two children, and the death of the werewolf guy. But this isn’t the story of Hana, it’s the story of her two children who grow up with the secret of being werewolves too, and who ultimately (in later volumes) have to decide whether they want to spend their lives as humans or as wolves. The supernatural element of the werewolf transformations are neither satisfactorily explained nor excitingly depicted, but as an emotional drama manga, Ame & Yuki works really well.

FLCL (フリクリ / Furi Kuri)
Language: German (translated from Japanese)
Authors: Studio Gainax / Hajime Ueda
Publisher: Carlsen (originally Kadokawa Shoten)
Year: 2003 (originally 2002)
Number of volumes: 3
Volumes reviewed: 1

Pages per volume: 192
Price per volume: € 6,00
Website: https://www.mangaupdates.com/series.html?id=1532 (Baka-Updates)
ISBN: 978-3-551-75951-1

The OVA series FLCL (Gainax / Production I.G 2000-2001) has a reputation of being one of the weirdest anime ever, and the manga adaptation lives up to that. It’s hard even to give a plot summary, because sometimes you just don’t get what’s going on, and it’s difficult to tell events that are important to the plot apart from those that are not (grandpa’s gateball match?!), and there’s a fair amount of non-linear storytelling and perhaps even unreliable narration involved. What we all can agree on, though, is that the story starts with teenager Naota getting hit in the head with a guitar by a woman on a scooter. To his surprise, he later finds this woman has moved in with his family as a housekeeper. Things become weirder and weirder for Naota as he is confronted with giant-robot attacks, an arson series, and romantic advances from two girls from his school.

All this is depicted in an art style that is really a multitude of art styles between which Ueda continually switches, often leaning to a seemingly crude look with broad, uneven outlines. A lot of the humour in FLCL operates on the verbal level – which works surprisingly well in translation -, for instance when the woman riding a Vespa scooter gets nicknamed “the wasp woman”.

Honourable mention: Some years ago I read the one-volume adaptation of Makoto Shinkai’s Hoshi no koe / Voices of a Distant Star (art by Mizu Sahara) and liked it, but I don’t have a copy at hand to read it again.


Exhibition review: Comics! Mangas! Graphic Novels!, Bonn

Last month, “the most comprehensive exhibition about the genre to be held in Germany” opened at the venerable Bundeskunsthalle in Bonn, where it can be visited until September 10. Curated by Alexander Braun and Andreas Knigge, it is a remarkable exhibition, not only because of its size (300 exhibits) but also because it tries to encompass the whole history of comics without any geographic, chronological or other limits. To this end, it is organised in six sections.

The first section is about early American newspaper strips. The amount of original newspaper pages and original drawings on display here would be impressive if there hadn’t been another major exhibition on the same topic not even a year ago. Still, it’s always interesting to see e.g. a Terry and the Pirates ink drawing alongside the corresponding printed coloured Sunday page (July 24, 1942). Another highlight in this section is an old Prince Valiant printing plate, or more precisely, a letterpress zinc cliché which would be transferred on a flexible printing plate for the cylinder of a rotary press, as the label in the display case explains.

Section 2 stays in the US but moves on to comic books. In its first of two rooms we find mainly superhero comics, again often represented through original drawings e.g. from Watchmen or Elektra: Assassin. The second room of this section is about non-superhero comic books; outstanding exhibits here are the complete ink drawings to two short stories: a 7-page The Spirit story by Will Eisner from July 15, 1951, and a 6-page war story from Two-Fisted Tales by Harvey Kurtzman from 1952.

The next section of the exhibition is dedicated to Francobelgian comics. There’s an interesting display case with a side-by-side comparison of the same page of Tintin in various original and translated editions, and there are also original drawings by Hergé, but perhaps even more impressive is an original inked page from Spirou et Fantasio by Tome and Janry, who revitalised the series in the 80s. In the same section, half a room contains examples of old German comics, both from East and West Germany.

And then we get to section 4, the manga section. The biggest treat here are several Osamu Tezuka original drawings from Janguru Taitei, Tetsuwan Atomu and Buddha. There’s original Sailor Moon art by Naoko Takeuchi as well. Most of the other exhibits, however, are from manga that are far less famous, at least outside of Japan. In this section there’s also the only factual error I found in the exhibition: a label on Keiji Nakazawa’s Hadashi no Gen says, “Barefoot Gen is one of the earliest autobiographical comics ever.” While Hadashi no Gen was certainly inspired by Nakazawa’s own experiences, it is a fictional story, not an autobiography – that would be Nakazawa’s earlier, shorter manga, Ore wa Mita.

Section 5 is about underground and alternative comics from both the US and Europe. The highlight here is the famous Cheap Thrills record by Big Brother and the Holding Company, which can be listened to via headphones. Most comics enthusiasts are familiar with the record cover by Robert Crumb, but perhaps not with the music on the album.

The sixth and last section is titled “Graphic Novels”. It is already unfortunate enough to make the dreaded ‘g-word’ part of the exhibition title, but this section makes things worse by not actually problematising the term or even analysing the discourse around it. Instead, “graphic novel” is meant here to comprise a vast range of contemporary comic production, including Jirō Taniguchi’s manga, pamphlet comic books such as Eightball and Love & Rockets, and Raw magazine.

The exhibition as a whole offers a lot of interesting things to see, but maybe its aim to represent the whole comics medium was too ambitious in the first place. Nowadays, no one would dare to make an exhibition about the whole history of film, or photography, but apparently comics are still considered peripheral enough that the whole medium can be squeezed into one wing of a museum. The general public, at whom this exhibition is presumably targeted, will probably discover many new things about comics, but for people who are already comic experts, the knowledge to be gained from this exhibition will be much smaller.

Rating: ● ● ● ○ ○

Trying to understand Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is one of the most popular algorithms for Topic Modeling, i.e. having a computer find out what a text is about. LDA is also perhaps easier to understand than the other popular Topic Modeling approach, (P)LSA, but even though there are two well-written blog posts that explain LDA (Edwin Chen’s and Ted Underwood’s) to non-mathematicians, it still took me quite some time to grasp LDA well enough to be able to code it in a Perl script (which I have made available on GitHub, in case anyone is interested). Of course, you can always simply use a software like Mallet that runs LDA over your documents and outputs the results, but if you want to know what LDA actually does, I suggest you read Edwin Chen’s and Ted Underwood’s blog posts first, and then, if you still feel you don’t really get LDA, come back here. OK?

Welcome back. Disclaimer: I’m not a mathematician and there’s still the possibility that I got it all wrong. That being said, let’s take a look at Edwin Chen’s first example again, and this time we’re going to calculate it through step by step:

  • I like to eat broccoli and bananas.
  • I ate a banana and spinach smoothie for breakfast.
  • Chinchillas and kittens are cute.
  • My sister adopted a kitten yesterday.
  • Look at this cute hamster munching on a piece of broccoli.

We immediately see that these sentences are about either eating or pets or both, but even if we didn’t know about these two topics, we still have to make an assumption about the number of topics within our corpus of documents. Furthermore, we have to make an assumption how these topics are distributed over the corpus. (In real life LDA analyses, you’d run the algorithm multiple times with different parameters and then see which fit best.) For simplicity’s sake, let’s assume there are 2 topics, which we’ll call A and B, and they’re distributed evenly: half of the words in the corpus belong to topic A and the other half to topic B.

Apparently, hamsters do indeed eat broccoli. Photograph CC-BY https://www.flickr.com/photos/carolyncoles/

What exactly is a word, though? I found the use of this term confusing in both Chen’s and Underwood’s text, so instead I’ll speak of tokens and lemmata: the lemma ‘cute’ appears as 2 tokens in the corpus above. Before we apply the actual LDA algorithm, it makes sense to not only tokenise but also lemmatise our 5 example documents (i.e. sentences), and also to remove stop words such as pronouns and prepositions, which may result in something like this:

  • like eat broccoli banana
  • eat banana spinach smoothie breakfast
  • chinchilla kitten cute
  • sister adopt kitten yesterday
  • look cute hamster munch piece broccoli

Now we randomly assign topics to tokens according to our assumptions (2 topics, 50:50 distribution). This may result in e.g. ‘cute’ getting assigned once to topic A and once to topic B. An initial random topic assignment may look like this:

  • like -> A, eat -> B, broccoli -> A, banana -> B
  • eat -> A, banana -> B, spinach -> A, smoothie -> B, breakfast -> A
  • chinchilla -> B, kitten -> A, cute -> B
  • sister -> A, adopt -> B, kitten -> A, yesterday -> B
  • look -> A, cute -> B, hamster -> A, munch -> B, piece -> A, broccoli -> B

Clearly, this isn’t a satisfying result yet; words like ‘eat’ and ‘broccoli’ are assigned to multiple topics when they should belong to only one, etc. Ideally, all words connected to the topic of eating should be assigned to one topic and all words related to pets should belong to the other. Now the LDA algorithm goes through the documents to improve this initial topic assignment: it computes probabilities which topic each token should belong to, based on three criteria:

  1. Which topics are the other tokens in this document assigned to? Probably the document is about one single topic, so if all or most other tokens belong to topic A, then the token in question should most likely also get assigned to topic A.
  2. Which topics are the other tokens in *all* documents assigned to? Remember that we assume a 50:50 distribution of topics, so if the majority of tokens is assigned to topic A, the token in question should get assigned to topic B to establish an equilibrium.
  3. If there are multiple tokens of the same lemma: which topic is the majority of tokens of that lemma assigned to? If most instances of ‘eat’ belong to topic A, then the token in question probably also belongs to topic A.

The actual formulas to calculate the probabilities given by Chen and Underwood seem to differ a bit from each other, but instead of bothering you with a formula, I’ll simply describe how it works in the example (my understanding being closer to Chen’s formula, I think). Let’s start with the first token of the first document (although the order doesn’t matter), ‘like’, currently assigned to topic A.

Should ‘like’ belong to topic B instead? If ‘like’ belonged to topic B, 3 out of 4 tokens in this document would belong to the same topic, as opposed to 2:2 if we stay with topic A. On the other hand, changing ‘like’ to topic B would threaten the equilibrium of topics over all documents: topic B would consist of 12 tokens and topic A of only 10, as opposed to the perfect 11:11 equilibrium if ‘like’ remains in topic A. In this case, the former consideration outweighs the latter, as the two factors get multiplied: the probability for ‘change this token to topic B’ is 3/4 * 1/12 = 6%, whereas the probability for ‘stay with topic A’ is 2/4 * 1/11 = 4.5%. We can also convert these numbers to absolute percentages (so that they add up to 100%) and say: ‘like’ is 57% topic B and 43% topic A.

What are you supposed to do with these percentages? We’ll get there in a minute. Let’s first calculate them for the next token, ‘eat’, because it’s one of those interesting lemmata with multiple tokens in our corpus. Currently, ‘eat’ in the first document is assigned to topic B, but in the second document it’s assigned to topic A. The probability for ‘eat stays in topic B’ is the same as the same as for ‘like stays in topic A’ above: within this document, the ratio of ‘B’ tokens to ‘A’ tokens is 2:2, which gives us 2/4 or 0.5 for the first factor; ‘eat’ would be 1 out of 11 tokens that make up topic B across all documents, giving us 1/11 for the second factor. The probability for ‘change eat to topic A’ is much higher, though, because there is already another ‘eat’ token assigned to this topic in another document. The first factor is 3/4 again, but the second is 2/12, because out of the 12 tokens that would make up topic A if we changed this token to topic A, 2 tokens would be of the same lemma, ‘eat’. In percentages, this means: this first ‘eat’ token is 74% topic A and only 26% topic B.

In this way we can calculate probabilities for each token in the corpus. Then we randomly assign new topics to each token, only this time not on a 50:50 basis, but according to the percentages we’ve figured out before. So this time, it’s more likely that ‘like’ will end up in topic B, but there’s still a 43% chance it will get assigned to topic A again. The new distribution of topics might be slightly better than the first one, but depending on how lucky you were with the random assignment in the beginning, it’s still unlikely that all tokens pertaining to food are neatly put in one topic and the animal tokens in the other.

The solution is to iterate: repeat the process of probability calculations with the new topic assignments, then randomly assign new topics based on the latest probabilities, and so on. After a couple of thousand iterations, the probabilities should make more sense. Ideally, there should now be some tokens with high percentages for each topic, so that both topics are clearly defined.

Only with this example, it doesn’t work out. After 10,000 iterations, the LDA script I’ve written produces results like this:

  • topic A: cute (88%), like (79%), chinchilla (77%), hamster (76%), …
  • topic B: kitten (89%), sister (79%), adopt (79%), yesterday (79%), …

As you can see, words from the ‘animals’ category ended up in both topics, so this result is worthless. The result given by Mallet after 10,000 iterations is slightly better:

  • topic 0: cute kitten broccoli munch hamster look yesterday sister chinchilla spinach
  • topic 1: banana eat piece adopt breakfast smoothie like

Topic 0 is clearly the ‘animal’ topic here. Words like ‘broccoli’ and ‘much’ slipped in because they occur in the mixed-topic sentence, “Look at this cute hamster munching on a piece of broccoli”. No idea why ‘spinach’ is in there too though. It’s equally puzzling that ‘adopt’ somehow crept into topic 1, which otherwise can be identified as the ‘food’ topic.

The reason for this ostensible failure of the LDA algorithm is probably the small size of the test data set. The results become more convincing the greater the number of tokens per document.

Detail from p. 1 of Astonishing X-Men (1995) #1 by Scott Lobdell and Joe Madureira. The text in the caption boxes (with stop words liberally removed) can be tokenised and lemmatised as: begin break man heart sear soul erik lehnsherr know world magneto founder astonishing x-men last bastion hope world split asunder ravage eugenics war human mutant know exact ask homo superior comrade day ask die

For a real-world example with more tokens, I have selected some X-Men comics. The idea is that because they are about similar subject matters, we can expect some words to be used in multiple texts from which topics can be inferred. This new test corpus consists of the first 100 tokens (after stop word removal) from each of the following comic books that I more or less randomly pulled from my longbox/shelf: Astonishing X-Men #1 (1995) by Scott Lobdell, Ultimate X-Men #1 (2001) by Mark Millar, and Civil War: X-Men #1 (2006) by David Hine. All three comics open with captions or dialogue with relatively general remarks about the ‘mutant question’ (i.e. government action / legislation against mutants, human rights of mutants) and human-mutant relations, so that otherwise uncommon lemmata such as ‘mutant’, ‘human’ or ‘sentinel’ occur in all three of them. To increase the number of documents, I have split each 100-token batch into two parts at semantically meaningful points, e.g. when the text changes from captions to dialogue in AXM, or after the voice from the television is finished in CW:XM.

Page 6, panel 1 from UItimate X-Men #1 by Mark Millar and Adam Kubert. Tokens: good evening boaz eshelmen watch channel nine new update tonight top story trial run sentinel hail triumphant success mutant nest los angeles uncover neutralize civilian casualty

I then ran my LDA script (as described above) over these 6 documents with ~300 tokens, again with the assumption that there are 2 equally distributed topics (because I had carelessly hard-coded this number of topics in the script and now I’m too lazy to re-write it). This is the result after 1,000 iterations:

  • topic A: x-men (95%), sentinel (93%), sentinel (91%), story (91%), different (90%), …
  • topic B: day (89%), kitty (86%), die (86%), …

So topic A looks like the ‘mutant question’ issue with tokens like ‘x-men’ and two times ‘sentinel’, even though ‘mutant’ itself isn’t among the high-scoring tokens. Topic B, on the other hand, makes less sense (Kitty Pryde only appears in CW:XM, so that ‘kitty’ occurs in merely 2 of the 6 documents), and its highest percentages are also much lower than those in topic A. Maybe this means that there’s only one actual topic in this corpus.

Page 1, panel 5 from Civil War: X-Men #1 by David Hine and Yanick Paquette. Tokens: incessant rain hear thing preternatural acute hearing cat flea

Running Mallet over this corpus (2 topics, 10,000 iterations) yields an even less useful result. The first 5 words in each topic are:

  • topic 0: mutant, know, x-men, ask, cooper
  • topic 1: say, sentinel, morph, try, ready

(Valerie Cooper and Morph are characters that appear in only one comic, CW:XM and AXM, respectively.)

Topic 0 at least associates ‘x-men’ with ‘mutant’, but then again, ‘sentinel’ is assigned to the other topic. Thus neither topic can be related to an intuitively perceived theme in the comics. It’s clear how these topics were generated though: there’s only 1 document in which ‘sentinel’ doesn’t occur, the first half of the CW:XM excerpt, in which Valerie Cooper is interviewed on television. But ‘x-men’ and ‘mutant’ do occur in this document, the latter even twice, and also ‘know’ occurs more frequently (3 times) here than in other documents.

So the results from Mallet and maybe even my own Perl script seem to be correct, in the sense that the LDA algorithm has been properly performed and one can see from the results how the algorithm got there. But what’s the point of having ‘topics’ that can’t be matched to what we intuitively perceive as themes in a text?

The problem with our two example corpora here was, they were still not large enough for LDA to yield meaningful results. As with all statistical methods, LDA works better the larger the corpus. In fact, the idea of such methods is that they are best applied to amounts of text that are too large for a human to read. Therefore, LDA might be not that useful for disciplines (such as comics studies) in which it’s difficult to gather large text corpora in digital form. But do feel free to e.g. randomly download texts from Wikisource, and you’ll find that within them, LDA is able to successfully detect clusters of words that occur in semantically similar documents.


Politics in Warren Ellis’s Trees

Happy Labour Day! And welcome to the second blog post of what is now a series of posts on Warren Ellis and politics. (If you’re wondering why Ellis and why politics, read last year’s post here.) This time we’re going to look at the first couple of issues of Trees (Image 2014-2016, art by Jason Howard).

Trees is a science fiction story set in the near future. The comic starts as a collection of episodes that are only loosely connected through the ‘Trees’ phenomenon, extraterrestrial pillars that have landed on various places on earth. There are three settings that are visited repeatedly and extensively in the first few issues:

  • Cefalù, Sicily, Italy. This part of the story centers on Eligia Gatti, a young woman whose boyfriend Tito runs a neo-fascist gang. Tito sums up the situation: “Mafia to the south of us, ‘Ndrangheta to the north, the government collapsing, and us in the middle. Cefalu is ruined. Someone needs to take control of things.” (#2). This is the ‘strong man’ rhetoric once again: government has failed to protect society from crime, so a few individuals take matters into their own hands. Only this time, Tito’s gang merely seeks to replace organised crime by their own flavour of it, using mafia-like methods such as extortion. Furthermore, the gang members are clearly portrayed as villains, and as the story progresses, Eligia tries to break free from the fascists.
    However, Eligia’s emancipation is not achieved through a reinstatement of governmental power. Instead, she turns to another individual who stands outside the law (as evidenced by his gun-wielding), the enigmatic elderly Professor Luca Bongiorno. Thus Ellis doesn’t provide a proper solution to this case of government failure.
  • Spitsbergen, Norway. A group of young scientists from all over the world lives and works at an Arctic research facility. Due to the harsh climate, they live an isolated life removed from the rest of society. Ellis portrays this quasi-anarchy as a double-edged sword: on the one hand, the scientists are free to go about their work as they please without much supervision, and they don’t have to worry about food and housing. On the other hand, any possible conflicts are difficult to resolve because there is no impartial authority: when Sarah suggests to Marsh that he should return home, saying “I don’t think it’s even been legal for you to have been on station for two and a half years”, he answers, “So send someone up here to arrest me” (#2). Clearly, government has little power over the inhabitants of Blindhail Station. Marsh even implies that their life is a regression to barbarism: “What’s civilized? We live in bears-that-eat-people country” (#1).
  • Shu, China. This appears to be a fictional city which has formed around one of the Trees. Access to it is restricted, but once you’ve managed to get inside the city walls, it turns out to be an artist colony of utopian qualities. We see Shu through the eyes of Chenglei, a young artist from rural China (or, as a citizen of Shu puts it, “from Pigshit Village in scenic Incest Province”) who is overwhelmed by the freedom and permissive attitude he finds there. The Shu story arc is Ellis’s love letter to anarchy. Unhindered by government authorities, Chenglei is for the first time in his life able to explore his sexuality, while back in “Pigshit Village […] people are still beaten by their own families for being gay”, as Chenglei notes in a later issue (#6).

In all three scenarios, Ellis asks what happens when governmental power loosens and anarchy (in different degrees and different flavours) sets in. The overall picture he paints is ambiguous – he shows both the risks and the opportunities of anarchy – but this exploration of anarchy can also be read as a refusal of authoritarian forms of government: clearly, the future as Ellis imagines it does not lie in governmental law enforcement.

It should be noted that some of the other story arcs in Trees are more explicitly political, but they only become important in later issues.


Linda Hutcheon’s Postmodernism – in comics?

There have already been five posts about postmodernism on this weblog, so why a sixth one? Linda Hutcheon’s 1988 book A Poetics of Postmodernism: History, Theory, Fiction is interesting because it directly engages in a dialogue – or should I say, argument – with previous texts on postmodernism such as Fredric Jameson’s.

Hutcheon defines postmodernism as:

  • “fundamentally contradictory”,
  • “resolutely historical”, and
  • “inescapably political” (p. 4, my emphasis).

This seems to contradict Jameson’s and other authors’ view of postmodernism as ahistorical and depthless. But what exactly does Hutcheon mean by ‘historical’ and ‘political’?

The treatment of the past in postmodern works is indeed different from earlier, modernist works. Postmodernism “suggests no search for transcendent timeless meaning, but rather a re-evaluation of and a dialogue with the past in the light of the present. […] It does not deny the existence of the past; it does question whether we can ever know that past other than through its textualized remains.” (pp. 19-20, emphasis LH).

Likewise, the political nature of postmodernism is a complex one, “a curious mixture of the complicitous and the critical” (p. 201). “The basic postmodernist stance [is] a questioning of authority” (p. 202), but at the same time it is also “suspicious of ‘heroes, crusades, and easy idealism’ […]” (p. 203, quoting Bill Buford). “The postmodern is ironic, distanced” (p. 203).

The contradictory nature of postmodernism, on the other hand, is something everyone can agree on. This characteristic seems to be more of a prerequisite for or superordinate concept of the other two.

Hutcheon’s idea of postmodernism is a relatively narrow one. Although she references many examples of postmodernist works (mainly novels), it becomes clear that those examples represent only a part, and probably not a large one at that, of contemporary cultural production. Which brings us to today’s comic, which is not quite as randomly selected as previous examples in this column: it might fit Hutcheon’s criteria (well, see below), but some other comics that have a more ‘postmodern’ feel to them might not.

Brahm Revel’s Guerillas vol. 1 (Oni Press, 2010) opens with a quotation attributed to French Prime Minister Georges Clemenceau (1841–1929). The first words of the comic proper are in a caption box that says, “Vietnam, 1970.” For the next 50 pages, the story follows John Francis Clayton, an “FNG” (Fucking New Guy) in a military unit in the Vietnam War. Revel pays a lot of attention to detail, such as military equipment and jargon. There are references to historic figures like Richard Nixon or Jane Goodall. And the depicted events are typical of what is commonly known about the Vietnam War: U.S. soldiers raping native women, torching villages, falling victim to the Viet Cong’s guerilla tactics, etc.

All of this serves to create a sense of historical accuracy. While the story narrated by Clayton can with some certainty be identified as fictional, the events just might have happened as depicted, in Vietnam, in 1970.

Then there’s a rupture around p. 56, at the end of the first chapter, when the chimpanzees are introduced, a rogue squad of trained apes equipped and dressed as U.S. soldiers, who fight against the Viet Cong on their own. Chapter 2 tells their origin as an experiment conducted by scientists (of German descent, of course). The chimpanzees exhibit a mix of human and animal behaviour; they thump their chests but smoke cigarettes.

This appears to be the contradiction that is central to Guerillas: the outlandish, ‘unrealistic’ motif of the scientifically enhanced apes clashes with an historically accurate, ‘realistic’ setting. While the beginning of this comic might be read as Revel’s version of what really happened in Vietnam, the story of the chimpanzees can hardly be interpreted this way: here we’re clearly in the realm of fiction, or entertainment, or fantasy. Of course, earlier fantasy and science fiction stories have used similar setups (e.g. Bram Stoker’s Dracula). However, the main difference is that in those classic stories, the authors went to great lengths to make the improbable seem plausible and fit into the realistic setting, whereas it’s harder to suspend one’s disbelief when reading Guerillas (not least because we’re reading it with the experience of many of those older similar stories).

According to Hutcheon, such a treatment of the past tells us something about the present, and this is also where the political nature of the work comes from. It is unreasonable to assume that the depiction of the grimness of the Vietnam War is a protest against, reassessment of, or coming-to-terms with it, given that the comic was made over 30 years after the end of the war. The ostensible reason for the Vietnam setting is that it makes more sense to deploy chimpanzee soldiers in the Vietnamese jungle than e.g. in the desert of the Gulf Wars, or in WWII in which the U.S. experience of the tropical regions was dominated by naval and aerial warfare (The Thin Red Line perhaps being the exception that proves the rule). But maybe Guerillas isn’t so time-specific after all. One of its themes is that a man learns from animals what humanity truly is, and this is a message that is relevant regardless of time and place: not unlike Pride of Baghdad by Vaughan and Henrichon, Guerillas can also be read as a commentary on the dehumanising effects of the war in Iraq, and by extension also Afghanistan and any other armed conflict.

But wouldn’t this – i.e. extrapolating from the specific to the universal – be a rather modernist reading? Indeed, Guerillas doesn’t seem to be the ideal example of Hutcheon’s postmodernism, but then again, few comics would meet her criteria without reservation. Still, Guerillas comes close. One can easily imagine how it might have qualified if Revel had made some different choices, e.g. if the protagonist would have been made identifiable as a real person (thus creating a contradiction between the genres of biography and fiction, cf. Hutcheon p. 9), or if the chimpanzee experiment would have been based on more advanced science and technology (thus creating a contradiction between different time layers, cf. Hutcheon p. 5). The resulting work would have been postmodern in Hutcheon’s sense, but whether it would have been a better comic is another question.