Hiragana for stylometry?

The other day I’ve been made aware that some things I’ve said in an earlier blogpost, “Author dictionaries and lexical analysis for comics”, might be misleading. So let’s be clear: if you would like to find something out about the writing style of an author or text, it’s not the best idea to look at the frequently used nouns, kanji, or other units of high semantic content. Those are more useful for analysing the content, i.e. the topic(s), of texts. In stylometry, units with low semantic content, such as function words (the, a, it, etc.), are more attractive objects of study, as they can be used almost independently of the topic and often present writers with a choice of which word to use when. In other words, the same writer tends to use the same function words and may be identified by them. (In practice, though, a combination of different characteristics is used for analysis – see the Stylometry article at Wikipedia and the references there.)

In order to automatically separate function words from content words in a digital text, part-of-speech tagging software may be employed. For Japanese, there is e.g. Kuromoji. But isn’t there a simpler way? Can’t we make use of the kanji–kana distinction used in the aforementioned earlier blogpost? If we identified kanji as the semantically rich(er) units, wouldn’t it be sufficient to focus on the kana for stylometric analysis? Maybe, maybe not. The results would probably be poorer, due to two main reasons:

  1. Every content word (noun, verb, adjective), even if usually written in kanji, may also be written in kana. For instance, 分かる (to understand) is more frequently spelled in hiragana only, わかる. So when we gather kana from a text, we might end up with unwanted content words.
  2. In flection suffixes, hiragana are dependent on the preceding kanji, and thus ultimately on the content of the text. For instance, a text on musical performance might contain many instances of the verb 引く hiku (to play an instrument), so one can expect the hiragana か ka, ki, ku, ke and こ ko to occur more frequently than in other texts, as they are used for inflecting 引く.

That being said, why don’t we put this kana analysis method to the test anyway? Let’s take the example from Akira vol. 5, p. 16 again in which the scientists are talking (初めまして。スタンリー・シモンズ博士です etc.). We’ll focus on hiragana and ignore katakana, as they tend to be used for nouns too. Starting from those two panels, I manually counted these and the following hiragana until I reached 100. Here are the 5 most frequent hiragana in this set:

  • de: 8
  • i: 7
  • shi: 7
  • te: 7
  • no: 6

That means, if this was a sufficiently large sample, in any other piece of text by Ōtomo, or at least within Akira, roughly 8% of its hiragana should be de, 7% should be i, etc. So I randomly picked another scene from Akira (vol. 3, p. 125 ff) and looked at the first 100 hiragana there. The 5 most frequently used hiragana from the previous example are used less often here, with the exception of i:

de, su, u, ru, se, da

  • de: 3
  • i: 8
  • shi: 1
  • te: 2
  • no: 3

In these pages in vol. 3, we find mainly other hiragana such as tsu (9 times – including small tsu), ga (6 times), o (5 times) and su (5 times) to be the most frequently used. That, however, doesn’t tell us anything yet about the similarity of these two pieces of text (which I’m going to call “Akira 1″ and “Akira 2″ from here on). We need to add a third example, and for this purpose I’m going to use 100 hiragana from Miko Yasu’s Hakozume from the recently reviewed Morning magazine. If our method is successful, the differences between Hakozume and each of the two Akira scenes should be larger than those between Akira 1 and Akira 2. With frequency values for approximately 50 distinct hiragana we now have 3 × ~50 data points on which we could unleash the whole range of advanced statistical methods. But we’ll keep things simple by simply adding up the differences in frequencies: Hakozume contains only 6 instances of de, i.e. 2 less than Akira 1; Hakozume uses 3 times i as opposed to the 7 in Akira 1, i.e. 4 less; Hakozume contains 6 instances of shi less than Akira 1; etc. Here’s the table of frequencies of de, i, shi, te and no in Hakozume:

a, no, na, n, de, a, no, ga…

  • de: 6
  • i: 3
  • shi: 1
  • te: 6
  • no: 8

The combined difference between Hakozume and Akira 1 for these 5 hiragana would be 2+4+6+1+2 = 15. For all ~50 different hiragana, the sum is 96.

This looks like a large number, and indeed, when we calculate the difference between Akira 1 and Akira 2 in this way, the result is 82. This means, the two Akira chunks are more similar in their usage of hiragana than Hakozume and Akira 1.

However, we’re not done yet. We still need to compare Hakozume to Akira 2. The result of this comparison may come as a surprise: the sum of differences is also 82! So Akira 2 is as similar to Hakozume as it is to Akira 1. If our goal was to find out whether a given piece of text is taken from Akira or not, our method would fail if we used Akira 2 as our base text with which to compare all others.

ha, no, ki, ka, ra, ho, do, de, ki, wo…

Just to make sure, I took another 100 hiragana from a different random manga in the same issue of Morning, Rito Asami’s Ichikei no karasu. I’ll refer to Ichikei no karasu as Morning 2 from now on, and to Hakozume as Morning 1. The results of the comparisons are even ‘worse’: while the sum of differences between Morning 2 and Akira 2 is 98 – i.e. vastly different – the difference between Morning 2 and Akira 1 is only 74, i.e. very similar.

Frequency of all hiragana in each of the four 100-hiragana samples

In a way, the results do make sense though. We’re looking at dialogue, after all, and the way scientists (in Akira 1) speak is closer to that of lawyers (in Morning 2) than that of insurgent thugs (in Akira 2). And apparently, the conversation between the two policewomen (in Morning 1) is not quite unlike the latter.

As ever so often we could now blame the unsatisfactory results on the small sample size – if we had used chunks of 1000 hiragana instead of 100, surely our attribution attempts would have been more successful? We’ll never find out (unless we obtain a complete digital copy of Akira and extract the hiragana automatically). Another way to improve results would be to tweak the methodology: using data mining algorithms, more elaborate metrics such as co-occurrence of several hiragana could be employed. In actual stylometric research, hiragana seem to be used in yet another metric – the ratio of all hiragana to all other characters (kanji, katakana, rōmaji).

4 Comments on “Hiragana for stylometry?”

  1. […] ended my blogpost on hiragana frequency as a stylometric indicator with the remark that, rather than the frequency distribution of different hiragana in the text, the […]

  2. Reba Isles says:

    Thanks for sharing your thoughts onn but. Regards

  3. […] recent blogposts about stylometry (e.g. here), I skipped a bit of maths that, in hindsight, might be worth talking about. As it turns out, […]

  4. […] our little stylometric experiments, we compared different manga in terms of their hiragana frequencies. While we were able to say how similar or different the comics are to each other, […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s